|簡體中文

比思論壇

 找回密碼
 按這成為會員
搜索



查看: 401|回復: 0
打印 上一主題 下一主題

用机器学习揭示全球中大地震破裂模式

[複製鏈接]

5229

主題

1

好友

1萬

積分

教授

Rank: 8Rank: 8

  • TA的每日心情

    2024-4-17 22:16
  • 簽到天數: 247 天

    [LV.8]以壇為家I

    推廣值
    0
    貢獻值
    1
    金錢
    7461
    威望
    15989
    主題
    5229
    跳轉到指定樓層
    樓主
    發表於 2022-6-11 10:29:04 |只看該作者 |倒序瀏覽
    记者从中国科学技术大学了解到,该校李泽峰研究员利用机器学习方法,总结了全球3000多个5.5级以上地震的震源时间函数特征,全景式地展示全球地震破裂过程的相似性和多样性,深化了对地震能量释放模式的认识,对地震早期预警具有启示意义。研究成果日前发表在国际知名地学期刊《地球物理研究快报》上。

    地震是人类社会面临的重要自然灾害之一,近20年来全球中大地震已经造成近100万人伤亡,经济损失不计其数。地震破裂过程多种多样,客观衡量它们的相似性和差异性,有助于认识地震物理过程和地震震级的早期预测。然而,前人研究或是叠加多个地震的平均破裂过程,无法衡量全球地震差异范围,或是基于某些破裂特征的统计,无法做到整个破裂过程的系统比较。

    李泽峰研究员利用深度学习中的变分自编码器对全球3000多个中大型地震的震源时间函数进行二维空间压缩和模型重构,全景式地展示了全球地震矩释放模式和数量分布。研究发现,中大地震以简单破裂为主,复杂破裂较少,并且揭示了两类特殊地震的分布规律,即能量释放集中在破裂后期的逃逸模式以及分多次能量释放的复杂地震,发现大地震能量释放模式具有弱震级依赖性,对地震早期预警中最终震级的可预测性提供了有益启示。

    该研究成果是继该团队与哈佛大学合作研究的震源时间函数聚类方法的发展,也是团队近年来致力于将人工智能应用于科学发现系列研究成果之一。

    您需要登錄後才可以回帖 登錄 | 按這成為會員

    重要聲明:本論壇是以即時上載留言的方式運作,比思論壇對所有留言的真實性、完整性及立場等,不負任何法律責任。而一切留言之言論只代表留言者個人意見,並非本網站之立場,讀者及用戶不應信賴內容,並應自行判斷內容之真實性。於有關情形下,讀者及用戶應尋求專業意見(如涉及醫療、法律或投資等問題)。 由於本論壇受到「即時上載留言」運作方式所規限,故不能完全監察所有留言,若讀者及用戶發現有留言出現問題,請聯絡我們比思論壇有權刪除任何留言及拒絕任何人士上載留言 (刪除前或不會作事先警告及通知 ),同時亦有不刪除留言的權利,如有任何爭議,管理員擁有最終的詮釋權。用戶切勿撰寫粗言穢語、誹謗、渲染色情暴力或人身攻擊的言論,敬請自律。本網站保留一切法律權利。

    手機版| 廣告聯繫

    GMT+8, 2024-12-8 21:55 , Processed in 1.016014 second(s), 25 queries , Gzip On.

    Powered by Discuz! X2.5

    © 2001-2012 Comsenz Inc.

    回頂部